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Abstract. Lagrangian particle dispersion models require interpolation of all meteorological input variables to the position

in space and time of computational particles. The widely used model FLEXPART uses linear interpolation for this purpose,

implying that the discrete input fields contain point values. As this is not the case for precipitation (and other fluxes) which

represent cell averages or integrals, a preprocessing scheme is applied which ensures the conservation of the integral quantity

with the linear interpolation in FLEXPART, at least for the temporal dimension. However, this mass conservation is not ensured5

per grid cell, and the scheme thus has undesirable properties such as temporal smoothing of the precipitation rates. Therefore,

a new reconstruction algorithm was developed, in two variants. It introduces additional supporting grid points in each time

interval and is to be used with a piecewise linear interpolation to reconstruct the precipitation time series in FLEXPART. It

fulfils the desired requirements by preserving the integral precipitation in each time interval, guaranteeing continuity at interval

boundaries, and maintaining non-negativity. The function values of the reconstruction algorithm at the sub-grid and boundary10

grid points constitute the degrees of freedom which can be prescribed in various ways. With the requirements mentioned it

was possible to derive a suitable piecewise-linear reconstruction. To improve the monotonicity behaviour, two versions of a

filter were also developed that form a part of the final algorithm. Currently, the algorithm is meant primarily for the temporal

dimension. It was shown to significantly improve the reconstruction of hourly precipitation time series from three-hourly input

data. Preliminary considerations for the extension to additional dimensions are also included as well as suggestions for a range15

of possible applications beyond the case of precipitation in a Lagrangian particle model.

1 Motivation

In numerical models, extensive variables are usually discretised as grid-cell integral values so that conservation properties can

be fulfilled. A typical example is the precipitation flux in a meteorological forecasting model. Usually, one is interested in the

precipitation at the surface, and thus the quantity of interest is a two-dimensional horizontal integral (coordinates x and y) over20

each grid cell. Furthermore, it is accumulated over time t during the model run, and written out at distinct intervals together

with other variables, such as wind, temperature, etc. After the trivial postprocessing step of deaccumulation, each value thus

1

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-323
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



time

pr
ec
ip
it
at
io
n
ra
te

original precipitation info

0 1 2 3

interpolated precipitation

Figure 1. Illustration of the basic problem using an isolated precipitation event lasting one time interval represented by the thick blue

line. The amount of precipitation is given by the blue-shaded area. Simple discretisation would use the green circles as discrete grid-point

representation and interpolate linearly in between, indicated by the green line and the green-shaded area. Note that supporting points for the

interpolation are shifted by a half time interval compared to the times when other meteorological fields are available.

represents an integral in x,y, t space – the total amount of precipitation which fell on a discrete grid cell during a discrete time

interval.

In Lagrangian particle dispersion models (LPDMs) (Lin et al., 2013), it is necessary to interpolate the field variables obtained

from a meteorological model to particle positions in (three-dimensional) space and in time. The simplest option, to assign the

value corresponding to the grid cell in which the particle resides (often called “nearest-neighbour” method), is not sufficiently5

accurate. For example, in the case of precipitation, this would lead to an unrealistic, checkerboard-like deposition field. A

simple approach for improvement would be to ascribe the gridded precipitation value to the spatio-temporal centre of the

space-time cell and then perform linear interpolation between these points, as illustrated in Figure 1. While this works for the

case of intensive field quantities where gridded data truly represent point values, it is not a satisfactory solution for extensive

quantities, as it does not conserve the total amount, as will be shown below. The problem became obvious to us with respect to10

the precipitation field in the LPDM FLEXPART (Stohl et al., 2005). Therefore, it will be discussed using this example, even

though the problem is of a general nature and the solution proposed has a wide range of possible applications.

1.1 Introduction of the problem at the example of precipitation in FLEXPART

FLEXPART is a Lagrangian dispersion particle model (LPDM), which is typically applied to study air pollution, but is also

used for other problems requiring the quantification of atmospheric transports, such as the global water cycle or the exchange15

between the stratosphere and the troposphere, see Stohl et al. (2005). Before a FLEXPART run can be done, a separate pre-

processor is used to extract the meteorological input data from the Meteorological Archival and Retrieval System (MARS) of

the European Centre for Medium Range Weather Forecasts (ECMWF) and prepare them for use in the model. (The model is

also able to ingest meteorological fields from the United States National Center for Environmental Prediction. However, it was

originally designed for ECMWF fields and we limit our discussion here to this case.) Currently, a relatively simple method20

processes the precipitation fields in a way that is consistent with the scheme applied in FLEXPART for all variables, linear

interpolation between times where input fields are available. Under these conditions, it is not possible to conserve the original
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Figure 2. Example of so-called ‘disaggregation’ of precipitation data for the use in FLEXPART as currently implemented, with the case of

an isolated precipitation period. Note that the supporting points for the interpolation now coincide with the times when other meteorological

fields are available. Colours are used as in Fig. 1.

amount of precipitation in each grid cell. The best option, which was realised in the preprocessing, is conservation within

the interval under consideration plus the two adjacent ones. Unfortunately, this leads to undesired temporal smoothing of the

precipitation time series – maxima are damped and minima are raised. It is even possible to produce nonzero precipitation in

dry intervals bordering a precipitation period as shown in Fig. 2. The FLEXPART data extraction software refers to this process

as ‘disaggregation’.5

Horizontally, the precipitation values are averages for a grid cell around the grid point to which they are ascribed. Thus, we

don’t have the asymmetry of the time coordinate, where data are attached to the end of the integration interval. Nevertheless,

the linear interpolation causes here the same problem of spreading out the information to the neighbouring grid cells with

implied smoothing, as can be easily seen.

The goal of this work is to develop a reconstruction algorithm for the one-dimensional temporal setting which10

– strictly conserves the amount of precipitation within each single time interval,

– preserves the non-negativity,

– is continuous at the interval borders,

– and ideally also should reflect a natural precipitation curve. This latter condition can be understood in the sense that the

reconstruction graph should reveal good monotonicity properties.15

– Furthermore, it should be easy and efficient to implement within the existing framework of the FLEXPART code and its

data extraction preprocessor.

These requirements on the reconstruction algorithm imply that time intervals with no precipitation remain unchanged, i.e. the

reconstructed values vanish throughout this whole time interval, too. In the simplest scenario of an isolated precipitation event,

where in the time interval before and after the data values are zero, the reconstruction algorithm therefore has to vanish at20

the boundaries of the interval, too. The additional conditions of continuity and conservation of the precipitation amount then

require to introduce sub-grid points if we want to keep a linear interpolation (see Fig. 3). The height thereby is determined
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Figure 3. Precipitation rate linearly interpolated using a sub-grid with two additional points. Colours as in Fig. 1.
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Figure 4. Illustration of a reconstruction for longer periods with positive data values, where each sub-grid function value constitutes one

degree of freedom.

by the condition of conservation of the integral of the function over the time interval. The motivation for a linear formulation

arises from the last point of the above list of desirable properties.

It can be noted that in principle a single sub-grid point per time interval would be sufficient. This, however, would result in

very high function values and steep slopes of the reconstructed curve, which appears to be less realistic and thus not desirable.

As we shall see in the next section, closing the algorithm for such isolated precipitation events is quite straightforward, since5

the only degree of freedom constituting the height of the reconstruction function is determined by the amount of precipitation

in the interval. However, the situation becomes much more involved if longer periods of precipitation occur, i.e., several

consecutive time intervals with positive data. Then, in general, each sub-grid function value constitutes one degree of freedom

(Fig. 4).

Therefore, in order to close the algorithm, we have to fix all of these additionally arising degrees of freedom. As a first step10

we make a choice for the slope in the central subinterval, which relates the two inner sub-grid function values. Three possible
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approaches are discussed for this choice. Conservation provides a second condition. These two can be considered to determine

the two inner sub-grid points. Then, the function values at the grid points in between time intervals of positive data are left to

be prescribed, and as each point belongs to two intervals, this corresponds to the third degree of freedom. The steps leading

to the final algorithm (of which there are some variants) are presented in Sec. 3. Ways for extending the one-dimensional

algorithms to two-dimensional setting are briefly discussed as well. Note that we use the wording ‘reconstruction algorithm’5

and ‘interpolation algorithm’ interchangeably.

In the following Sec. 2, some existing literature on conservative reconstruction algorithms is briefly reviewed, with emphasis

on applications used for semi-Lagrangian advection schemes in Eulerian models. To our knowledge, confirmed by contacts with

people active in this field, a piecewise linear, conservative reconstruction algorithm using a sub-grid has not yet been proposed.

Section 4 then presents an evaluation of the algorithms by verifying them with synthesised data and validating them with10

real data from the ECMWF where the available 1-hourly resolution serves as a reference data set and the 3-hourly resolution as

input for the interpolation algorithms. The verification demonstrates that the demanded requirements are indeed fulfilled and

the validation compares the accuracy of the new algorithms with the currently used one to show the improvements.

The conclusions (Sec. 5) summarise the findings, present an outlook for the next steps, and suggest a range of possible appli-

cations of the new reconstruction algorithm beyond the narrow case of precipitation input to a Lagrangian particle dispersion15

model.

2 Possible approaches and related literature

A widely used form of interpolation is the well-known spline interpolation consisting of piecewise polynomials, which are

typically chosen as cubic ones, see e.g. Hämmerlin and Hoffmann (1994); Hermann (2011). The task of finding an appropriate

piecewise polynomial interpolation, which is non-negative, continuous, mass conserving and monotonic is a challenging one.20

This fact has also been pointed out e.g. in White et al. (2009), where it is stated that building a reconstruction profile satisfying

all these requirements is generally not possible. Typically the reconstruction profiles are not continuous on the edges of the

grid cells. Sufficient conditions for positive spline interpolation in form of inequalities on the interpolation’s coefficients have

been derived in Schmidt and Heß (1988).

The issue of mass-conservative interpolation emerge also in the context of semi-Lagrangian finite-volume advection schemes,25

which have become very popular. These schemes, with a two-dimensional application in mind, are known under the heading of

“remapping”. Eulerian grid cells are mapped to the respective areas covered in the previous time step, and then the mass in this

area is calculated by a reconstruction function from the available grid-cell average values (Lauritzen et al., 2010). Apart from

global interpolation functions such as Fourier methods, piecewise defined polynomials are the method of choice in this con-

text. They can be piecewise constant, linear, parabolic (second-order) or cubic (third-order). The first two options are usually30

discarded as not being accurate enough. While this application shares the need for the reconstruction to be conservative and

positive definite, and the aim of preserving monotonicity, with our problem, there are some aspects where the characteristics

of the problems are different. For the advection schemes, continuity at the cell interface is not a strict condition. However,

5
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they need to be able to reconstruct sharp peaks inside each volume, as otherwise through the repetitive application during the

numerical integrations, strong artificial smoothing of sharp structures would result. Therefore, at least second-order and if pos-

sible higher-order methods are preferred. The drawback of higher-order reconstruction functions is their tendency to overshoot

and produce wiggles which have to be removed or reduced by some sort of filter. However, as in the remapping process one

always integrates over some domain, this is less of an issue than in our case, where for each computational particle we need an5

interpolated value at exactly one point.

An interesting example of such a semi-Lagrangian conservative remapping is given by Zerroukat et al. (2002). The coef-

ficients of the one-dimensional cubic spline in each interval are determined using the conservation of mass in the underlying

interval. The function values at the left border points are determined by an additional spline interpolation involving the two

preceding, the actual and the following intervals in such a way as to satisfy four conditions of mass conservation. The function10

values at the right border points are determined in a similar fashion. This construction in particular provides continuity. A

monotonic and positive definite filter has then been applied to this semi-Lagrangian scheme (Zerroukat et al., 2005a), which

first detects regions of non-monotonic behaviour, and then locally reduces the order of the polynomial until monotonicity is

regained. An improved version of this filter without reducing the order of the interpolating polynomial in most cases is pro-

vided in Zerroukat et al. (2005b), where a parabolic spline is used for interpolation. The basic algorithm in all these cases is15

one-dimensional, where the application to the two-dimensional case has been explicitly demonstrated only in Zerroukat et al.

(2005a), as a combination of the so-called cascade splitting and the one-dimensional algorithm.

Considering the mentioned differences between the reconstruction problem arising in the context of semi-Lagrangian ad-

vection schemes and of the LPDM FLEXPART, and in addition that linear interpolation is used in FLEXPART for all other

quantities and that evaluation of the interpolation function has to be done efficiently for up to millions of particles in each time20

step, we have chosen to construct a non-negative, continuous and conservative reconstruction algorithm based upon piecewise

linear interpolation. Contrary to standard piecewise linear methods, we divide each grid interval into three subintervals, so that

our method has some similarity with a piecewise parabolic approach while being simpler and presumably faster.

3 Derivation of the interpolation algorithm

3.1 Notation and basic setting25

In accordance with the considerations presented in the introduction (Section 1), we consider our input data to be precipitation

values defined over a period [0,T ], available as amounts (or equivalently, as average precipitation rates) during constant time

intervals of duration ∆t, separated by equidistant times ti where

ti = i∆t , i ∈ {0, . . . , iT }. (1)

The time intervals for which the precipitation amounts are defined are denoted as30

Ii = (ti, ti+1] = (i∆t,(i + 1)∆t] for i ∈ I := {0, . . . , iT − 1} . (2)

6
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Precipitation can then be represented as a step function g : [0,T ]→ R with values

g(t) = gi for t ∈ Ii , i ∈ I. (3)

As an abbreviation, we write g(0) = g0. The total precipitation within one time interval Ii is then given by
∫

Ii

gdt = gi ∆t . (4)

Our aim is to find a piecewise linear function f : [0,T ]→ R to serve as interpolation. We require it5

1. to be continuous, and

2. to conserve the precipitation amount within each single time interval Ii, i. e.
∫

Ii

f dt = gi∆t . (5)

In particular,

gi = 0 ⇔ f(t) = 0 for t ∈ Ii. (6)10

These two conditions necessitate the introduction of sub-grid points. A single sub-grid point was deemed insufficient for a

realistic representation of precipitation time series. For simplicity, we choose an equidistant sub-grid setting with two additional

points

t
(1)
i = ti +

1
3

∆t and t
(2)
i = ti +

2
3

∆t = ti+1−
1
3

∆t for i ∈ I . (7)

The subintervals resulting from these sub-grid points are defined as I
(1)
i = (ti, t

(1)
i ] , I

(2)
i = (t(1)i , t

(2)
i ] , I

(3)
i = (t(2)i , ti+1] and15

the slopes of the interpolation algorithm f in these subintervals are denoted accordingly by k
(1)
i , k

(2)
i , k

(3)
i . The sub-grid

function values are abbreviated in the following as fi := f(ti) , f
(1)
i := f(t(1)i ) , f

(2)
i := f(t(2)i ) . Fig. 5 shows a schematic

overview of these definitions.

It is evident that the function f in Ii is uniquely determined by the function values fi, f
(1)
i , f

(2)
i , fi+1, with linear interpo-

lation between them. Equivalently, the problem can be stated in terms of the slopes, such that the function f in Ii is determined20

uniquely by fi, k
(1)
i , k

(2)
i , k

(3)
i . This equivalence is based upon the relations between slopes and function values:

f
(1)
i = fi +

1
3
k

(1)
i ∆t , f

(2)
i = f

(1)
i +

1
3
k

(2)
i ∆t , fi+1 = f

(2)
i +

1
3
k

(3)
i ∆t . (8)

3.2 Conservation (equal-area) condition

The key requirement for the interpolation algorithm f is to preserve precipitation amount within each single time interval Ii as

specified in Eq. (5). Therefore,25

Pi =
∫

Ii

f dt =
∫

Ii

gdt for ∀i ∈ I , (9)
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Figure 5. Schematic overview of the basic notation in a precipitation interval with the original precipitation rate g (green) as a step func-

tion and the interpolated data f (dark blue) as the piecewise linear function. The original time interval with fixed grid length ∆t is split

equidistantly in three subintervals denoted by I(1,2,3)
i , with the slopes in the subintervals as denoted by k(1,2,3)

i . The sub-grid function values

fi,f
(1,2)
i ,fi+1 are marked by red diamonds.

or, equivalently, equal areas underneath function graphs of f and g. In the following, we thus refer to Eq. (9) also as the

equal-area condition. In terms of the function values, Eq. (9) amounts (after division by ∆t) to

gi =
1
6

(
fi + fi+1 + 2(f (1)

i + f
(2)
i )
)

=
1
6
fi +

2
6

f
(1)
i +

2
6

f
(2)
i +

1
6

fi+1 . (10)

Since the precipitation rate is by nature a non-negative quantity, we need a solution f satisfying f ≥ 0 , or equivalently

fi, f
(1)
i , f

(2)
i ≥ 0 for ∀i ∈ I . (11)5

As already mentioned above, a further consequence of the equal-area condition and the continuity condition is in particular

gi = 0 ⇒ fi = f
(1)
i = f

(2)
i = fi+1 = 0 , (12)

such that periods with zero precipitation rate remain unchanged.

3.3 Isolated precipitation event

We first demonstrate the basic idea of the interpolation algorithm for the simplest case of an isolated precipitation event, i.e.10

we assume an interval i ∈ I with gi > 0 and gi−1 = gi+1 = 0 (see Fig. 6). As Eq. (12) then holds in the surrounding intervals

Ii−1 and Ii+1, the continuity condition yields fi = fi+1 = 0 at the boundary of the interval. Moreover, as we do not want to

create artificial asymmetry in the problem, we let f be constant in the centred subinterval I
(2)
i , such that the only function

value left to be determined is f
(1)
i = f

(2)
i , which constitutes thus the only degree of freedom in the problem. This height of the

interpolation function is now obtained via the equal-area condition Eq. (10), which in this particular case amounts to15

f
(1)
i =

3
2
gi , (13)
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Figure 6. Isolated precipitation event (no precipitation in gi−1 and gi+1). The only degree of freedom is given by the function value

f
(1)
i = 3

2
gi and is marked by a red square.

therewith closing the algorithm.

3.4 General case

Whereas the derivation of the algorithm for the isolated precipitation event is straightforward, the problem becomes consider-

ably more involved if consecutive intervals with non-zero precipitation occur. Treating each interval as an isolated precipitation

event as demonstrated in Fig. 6 by forcing the function values at the original grid points to vanish would be possible, but such5

an algorithm is not acceptable, as the interpolation function f has to reflect the actual course of precipitation in a realistic way.

All function values fi inbetween periods with non-zero precipitation should be positive, too. Thus, they constitute additional

degrees of freedom and need to be determined. The main challenge for a suitable interpolation algorithm lies in finding a proper

way to deal with these additional degrees of freedom.

Therefore, we now consider the case of two consecutive intervals with non-zero data gi gi+1 > 0 for some i ∈ I. The first10

function value fi is assumed to be given by the algorithm in the preceding interval Ii−1, or – for the first interval – a prescribed

boundary value. Then, since gi+1 > 0, we neither have the condition of vanishing fi+1, nor is the symmetry relation f
(1)
i = f

(2)
i

desirable generally. Thus, with given fi, in general there are the three degrees of freedom f
(1)
i , f

(2)
i , fi+1 , associated with the

interval Ii, as illustrated in Fig. 4. Since the equal-area condition corresponds to only one of them, two additional relations are

required.15

3.4.1 Boundary conditions

In the following, we assume the boundary values

f0 := f(0) and fiT
:= f(T ) (14)

9
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as being prescribed. If their values are not explicitly provided, a simple assumption is to consider the precipitation rate to be

constant in time and thus f(0) = g(0) and f(T ) = g(T ), or, equivalently, f0 = g0 and fiT
= giT−1.

3.4.2 Prescribing the central slope

As a means to reflect the actual course of precipitation, a natural first step is to prescribe the central slope k
(2)
i . We choose it as

the average of the slopes in the outer two subintervals, i.e.5

k
(2)
i =

k
(1)
i + k

(3)
i

2
, (15)

which has the desirable property that it allows for the particular case k
(1)
i = k

(2)
i = k

(3)
i . Moreover, inserting Eq. (8), we obtain

the equivalent expression

k
(2)
i =

fi+1− fi

∆t
. (16)

This result is quite intuitive in the sense that it corresponds to the mean slope of the interpolation function throughout the10

interval Ii. Other possible approaches which have not been selected are

(i) the simplest choice for k
(2)
i , namely k

(2)
i = 0, having, as in the isolated precipitation event, the consequence of f being

constant in the central subintervals I
(2)
i , and thus in particular f

(1)
i = f

(2)
i ; this choice, however, does not reflect a natural

precipitation curve;

(ii) a more advanced, data-driven approach, representing the tendency of the surrounding data values via the centred finite15

difference

k
(2)
i =

gi+1− gi−1

2∆t
; (17)

the problem here is to fulfil the condition of non-negativity if gi is small compared to one of its neighbouring values.

Letting k
(2)
i being determined via Eq. (16), the function values f

(2)
i are uniquely determined by f

(1)
i through Eq. (8)

f
(2)
i = f

(1)
i +

1
3
k

(2)
i ∆t = f

(1)
i +

1
3

(fi+1− fi) , (18)20

and thus the degrees of freedom are reduced accordingly.

3.4.3 Using the equal-area condition

Now, the function values f
(1)
i are determined in a way that the equal-area condition in Eq. (10) is satisfied, which, after inserting

Eq. (18) yields

gi =
1
18

(5fi+1 + fi) +
2
3
f

(1)
i . (19)25

We thus obtain for the sub-grid function values

f
(1)
i =

3
2
gi−

1
12

fi−
5
12

fi+1 , (20)

f
(2)
i =

3
2
gi−

5
12

fi−
1
12

fi+1 . (21)
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3.4.4 Options for closing the algorithm

Equations Eq. (20) and Eq. (21) show that the algorithm is closed once the function values at the grid points fi+1 are deter-

mined. Thus, the function values fi+1 for indices i ∈ I with gi gi+1 > 0 still need to be determined. An obvious first choice

would be to use the arithmetic mean value of the surrounding data values gi and gi+1. However, in order to fulfil Eq. (12), a

case distinction is required to deal separately with gi+1 > 0 or gi = 0. This would lead to a lack of continuity between the cases5

of precipitation equal to or only close to zero. For the latter case, the algorithm would even produce negative values. Therefore,

the arithmetic mean is not a good choice. A better choice is the geometric mean

fi+1 =
√

gi gi+1 for i ∈ I, (22)

which has the main advantage that the case distinction is not required. Hence, having Eq. (20) and Eq. (21) for the sub-grid

values f
(1)
i and f

(2)
i , respectively, the algorithm is now closed with the additional Eq. (22) for function value fi+1. However,10

the problem of negative values still can arise in the case of small values in between larger ones. This is due to the fact that for

gi+1→ 0, the geometric mean
√

gigi+1 converges to 0 in general too slowly.

A further possible approach would be to assign fi+1 = min{gi,gi+1} with k
(2)
i = 0, which fulfils the non-negativity, but

gives a non-monotonic solution curve and thus is not producing a natural precipitation curve. A less restrictive approach

would be to use fi+1 = min{f (2)
i ,f

(1)
i+1}. However, this would also lead to one slope being artificially set to zero, and thus be15

incompatible with a realistic course of the precipitation. Furthermore, this solution would be implicit, as the interval Ii depends

on the solution in Ii+1. Since the relation is via a minimum function, one would have to distinguish between all possible cases

of function values in the whole interval of precipitation, probably a too complex operation for longer periods.

We shall note that instead of prescribing the function values at the grid points directly, there are also other possible ap-

proaches. Two of them have been looked at.20

Instead of a function value, we might prescribe an additional slope. We thereby tested a basic finite difference approach

in terms of the involved data values as well as a symmetric version of it. As this does not preseve monotonicity, we also

derived a global algorithm, where the slope of the right subinterval in Ii is equal to the slope in the left subinterval of the

next time interval. Thus, the solution in the time interval Ii depends on the solution in the next time interval Ii+1, such that

the algorithm cannot be solved for each time interval individually anymore, but has to be solved globally in form of a linear25

system. This algorithm was shown to create better monotonicity properties, but the implementation is much more complicated

and solving the problem clearly computationally much more expensive. All of these algorithms, however, have a common

fault, namely the violation of non-negativity. This is caused by the fact that the algorithms with prescribed slopes all rely on

a case distinction, whether one involved precipitation value is positive or not, and therefore are not continuous with respect to

vanishing values. One should also note that algorithms based on prescribing additionally the slopes k
(3)
i for gi gi+1 > 0 are not30

invariant with respect to being solved forward or backward in time. This results from the asymmetry of the slopes, since when

solving backwards in time, the roles of the slopes k
(3)
i and k

(1)
i from the original problem are interchanged.

Another approach would be to formulate the reconstruction problem as an optimisation problem. However, for large data

sets this turned out to be much more expensive than the ad-hoc methods described before (using the MATLAB Optimisation
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Toolbox). As the final aim is to solve the interpolation problem for large data sets in three dimensions, this approach was not

further studied.

3.5 Non-negativity

As explained above, the preservation of non-negativity is a challenging requirement. In the following, we investigate sufficient

conditions for the latter to hold. The algorithm with the function values fi+1 being determined via the geometric mean Eq.5

(22), is considered as the base, having the strong advantage not to require a case distinction between vanishing and positive

values. It shall be combined with the minimum value approach which guarantees the non-negativity of the solutions. We thus

now investigate which conditions on generally prescribed non-negative function values fi are required to guarantee that also

the sub-grid function values are non-negative, i.e. f
(1)
i ≥ 0 ∧ f

(2)
i ≥ 0. From Eq. (20) and Eq. (21) it can be derived that this

is equivalent to10

18gi ≥max{fi + 5fi+1, 5fi + fi+1} . (23)

With our choice Eq. (16) for the central slope, a sufficient condition for the algorithm to preserve non-negativity is the restriction

fi+1 ≤ 3min{gi, gi+1} ∀i ∈ I . (24)

The same condition for non-negativity is obtained if the central slope is prescribed as zero, k
(2)
i = 0 (option (i) in Sect. 3.4.2).

With the data-driven definition Eq. (17) for the central slope, option (ii), the additional restriction15

18gi ≤ |gi+1− gi−1| (25)

would have to be fulfilled by the input data. However, this relation is often violated in realistic precipitation data, which justifies

the decision to discard this approach.

We thus return to the geometric mean Eq. (22) method and combine it with the non-negativity constraint Eq. (24) which

results in20

fi+1 = min{3gi, 3gi+1,
√

gigi+1} . (26)

We have thus obtained a piecewise-linear interpolation function determined by Eq. (26), (20) and (21) which defines a non-

negative, continuous and area-preserving algorithm, called Interpolation Algorithm 0 (IA0) henceforth.

3.6 Improving monotonicity

Figure 7 illustrates the IA0 algorithm with a practical example. It fulfils the mentioned requirements, but it appears to be not25

sufficiently realistic, as it does not preserve the monotonicity as present in the input data (minimum at t = 6 h).
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Figure 7. Results with the IA0 algorithm. The original precipitation rate g is shown in green with a 3-hourly resolution. The IA0 interpolated

data f on the new sub-grid with 1-hourly resolution is given in dark blue. A zero baseline is shown in black.

3.6.1 Adding a monotonicity filter

In response to this problem, we introduce a monotonicity filter which is active only in the regions where the graph of f

resembles the shape of an ‘M’ or ‘W’, or where

sgn(k(2)
i ) · sgn(k(3)

i ) =−1 ∧ sgn(k(3)
i ) · sgn(k(1)

i+1) =−1 ∧ sgn(k(1)
i+1) · sgn(k(2)

i+1) =−1 . (27)

In this case, we replace the function value fi+1 by5

fmon
i+1 = min

{
3gi, 3gi+1,

√
(f�i+1 f��i+1)+

}
(28)

where now f�i+1 and f��i+1 are the values at ti+1 obtained by taking either k
(3)
i = 0 in Ii, starting from fi, or k

(1)
i+1 = 0 in

Ii+1, ending at fi+2 respectively (see Fig. 8). Since these values can become negative, we just set negative values to zero,

as indicated by the shorthand notation F+ := max{F,0} for some value F . The function values fi and fi+2 thereby remain

unchanged while the sub-grid function values in the intervals Ii and Ii+1 are recomputed accordingly to satisfy the equal-area10

condition.

More precisely, given fi, we compute fi+1 by setting k
(3)
i = 0, further on denoted by f�i+1. With Eq. (8), this amounts to

f
(2)
i = f�i+1. According to Eq. (21), the function value f�i+1 becomes

f�i+1 =
18
13

gi−
5
13

fi . (29)

On the other hand, given fi+2, the function value f��i+1 corresponds to the one obtained from setting k
(1)
i+1 = 0, such that15

f
(1)
i+1 = f��i+1 (with Eq. (8)) while leaving fi+2 unchanged. Then, from Eq. (20) it follows that

f��i+1 =
18
13

gi+1−
5
13

fi+2 . (30)
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Figure 8. Illustration of the monotonicity filter construction. The original precipitation rate g is shown in green with a 3-hourly resolution.

The IA0 interpolated data f on the new sub-grid with 1-hourly resolution is given in dark blue. A zero baseline is shown in black. (a) At

first the function value fi+1 is split in f�i+1 and f��i+1 shown as red squares. Other function values are recomputed as shown with the red line

where fi and fi+2 remain unchanged as shown with purple circles. (b) Second, the function value fi+1 is substituted by the new function

value fmon
i+1 as marked with a red square.

The monotonicity filter then recomputes f
(1)
i ,f

(2)
i ,f

(1)
i+1,f

(2)
i+1 according to Eq. (20) and Eq. (21) with fi+1 being replaced by

fmon
i+1 from Eq. (28). The interpolation algorithm which uses the monotonicity filter henceforth is called Interpolation Algorithm

1 (IA1).
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3.6.2 Built-in monotonicity filter

It is also possible to construct an algorithm which directly incorporates the idea from the monotonicity filter introduced above.

In order to apply the filter in a single sweep, we need a kind of educated guess for fi+2 as this appears in Eq. (30). We estimate

it similar to Eq. (28) as

f̃i+2 = min{3gi+1, 3gi+2,
√

gi+1 gi+2} (31)5

where the tilde indicates that it is a preliminary estimate. We can now proceed analogously to above by constructing

f�i+1 =
18
13

gi−
5
13

fi , (32)

f��i+1 =
18
13

gi+1−
5
13

f̃i+2 , (33)

and determine fi+1 as

fi+1 = min
{

3gi, 3gi+1,
√

(f�i+1 f��i+1)+
}

, for i ∈ I , (34)10

respecting again the sufficient condition for non-negativity. Having obtained fi+1, the sub-grid function values in Ii are deter-

mined as before by Eq. (20) and Eq. (21), thus closing the algorithm. This improved version of the interpolation algorithm,

with the monotonicity filter directly built in, is called Interpolation Algorithm 2 (IA2) henceforth.

3.7 Summary of the interpolation algorithms IA1 and IA2

Three interpolation algorithms, IA0, IA1 and IA2, were developed. They were introduced on an additional sub-grid based15

on the geometric mean and fulfil the conditions to be non-negative, continuous and area-conserving. The basic algorithm is

called IA0. A monotonicity filter was then introduced to improve the realism of the reconstructed function. The IA1 algorithm

requires a second sweep through the data, while IA2 has a monotonicity filter already built into the main algorithm. The

equations defining IA1 and IA2 are listed in Table 1, and Fig. 9 illustrates all three with an example. The algorithms were

realized in Python and can be downloaded from the supplementary material.20

3.8 The two-dimensional case

We have also carried out a preliminary investigation of the two-dimensional case. In the case of precipitation, this could be

used for horizontal interpolation. We follow the same approach and introduce a sub-grid with two additional grid points, now

for both directions.

The isolated two-dimensional precipitation event can then easily be represented on the sub-grid as a truncated pyramid. For25

multiple adjacent cells with non-zero data, this type of interpolation is, however, not suitable due to the non-vanishing values

at the boundaries of the grids which would be difficult to formulate.

A more advantageous approach is the bilinear interpolation, which defines the function in a square uniquely through its four

corner values. (Note that we assume the grid spacing equal in both directions, without loss of generality, as this can always

15
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Table 1. Overview of the two algorithms IA1 and IA2. The second calculation of fi+1 in algorithm IA1 corresponds to the equation of fmon
i+1.

The superscript "mon" was neglected for the definition of the algorithm.

IA1 Ref. IA2 Ref.

f
(1)
i = 3

2
gi− 1

12
fi− 5

12
fi+1 (20) f

(1)
i = 3

2
gi− 1

12
fi− 5

12
fi+1 (20)

f
(2)
i = 3

2
gi− 5

12
fi− 1

12
fi+1 (21) f

(2)
i = 3

2
gi− 5

12
fi− 1

12
fi+1 (21)

fi+1 = min{3gi,3gi+1,
√
gigi+1} (26) f̃i+2 = min{3gi+1, 3gi+2,

√
gi+1 gi+2} (31)

if sgn(k
(2)
i ) · sgn(k

(3)
i ) =−1 ∧ (27)

sgn(k
(3)
i ) · sgn(k

(1)
i+1) =−1 ∧

sgn(k
(1)
i+1) · sgn(k

(2)
i+1) =−1 then

f�i+1 = 18
13
gi− 5

13
fi (29) f�i+1 = 18

13
gi− 5

13
fi (32)

f��i+1 = 18
13
gi+1− 5

13
fi+2 (30) f��i+1 = 18

13
gi+1− 5

13
f̃i+2 (33)

fi+1 = min
{

3gi, 3gi+1,
√

(f�i+1 f
��
i+1)+

}
(28)∗ fi+1 = min

{
3gi, 3gi+1,

√
(f�i+1 f

��
i+1)+

}
(34)

f
(1)
i = 3

2
gi− 1

12
fi− 5

12
fmon

i+1 (20)

f
(2)
i = 3

2
gi− 5

12
fi− 1

12
fmon

i+1 (21)

endif

be achieved by simple scaling). The main idea here is to apply the bilinear interpolation in each of the nine sub-squares. We

recall that for given function values F (Xi,Yj) := Fij , with i, j ∈ {1,2}, at the corners of an area A = [X1,X2]× [Y1,Y2], the

bilinear interpolation amounts to

F (X,Y ) =
Y2−Y

Y2−Y1

(
X2−X

X2−X1
F11 +

X −X1

X2−X1
F21

)
+

Y −Y1

Y2−Y1

(
X2−X

X2−X1
F12 +

X −X1

X2−X1
F22

)
, (35)

which corresponds to interpolating first in X at Y = Y1 and Y = Y2 and then performing another interpolation in Y (or vice5

versa). Thus, the algorithm is closed if the 16 sub-grid function values in each grid cell are known, where again only one is

determined by the conservation of mass. The case of the isolated precipitation event with vanishing boundary values is again

easily solved, since only the corner values of the centred sub-square with constant height need to be determined, amounting to

one degree of freedom. This in particular demonstrates that the bilinear interpolation algorithm is a natural extension from the

one-dimensional case, since the function value in the centred sub-square of such an isolated precipitation event turns out to be10

f0
ij =

9
4
gij =

(3
2

)2

gij . (36)

For the general case involving larger precipitation areas many different possibilities for prescribing the slopes and function

values arise at the sub-grid points. The geometric-mean based approach can be extended to the two-dimensional setting with

corresponding restrictions guaranteeing non-negativity. The derivation of a full solution for the two-dimensional case is re-

served for future work.15
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Figure 9. Illustration of the basic IA0 algorithm in (a), with the additional monotonicity filter in algorithm IA1 in (b) and the directly

implemented filter in the algorithm IA2 in (c). The original precipitation rate g is shown in green with a 3-hourly resolution. The IA0

interpolated data f on the new sub-grid with 1-hourly resolution is given in dark blue. A zero baseline is shown in black.

4 Evaluation of interpolation algorithms

The evaluation of the new algorithms IA1 and IA2 was carried out in three steps. At first, the interpolation algorithms were

applied to ideal, synthetic time series to verify the fulfilment of the requirements. Next, they were validated with ECMWF

data. Short sample sections were analysed visually. The main validation is then based on statistical metrics. The original

algorithm from the ECMWF data extraction (flex_extract) for FLEXPART was also included in the evaluation. In the following,5

it is referred to as Interpolation algorithm FLEXPART (IFP). This allows to see and quantify the improvements through

the new algorithms. The IFP is not published, but it is included in the flex_extract download at the FLEXPART web site

(http://flexpart.eu/) and a python version of it is included in the Supplementary Material.

4.1 Verification of algorithms with synthetic data

Verification is the part of evaluation where the algorithm is tested against the requirements to show whether it is doing what10

it is supposed to do. These requirements, mentioned in the previous sections, are classified into strict requirements (main

conditions, stRE) and soft requirements (soRE). They are summarised and classified in Table 2.
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Table 2. Classification of requirements for the interpolation algorithm. They are classified into strict requirements (stRE), which are essential

and need to be fulfilled, and soft requirements (soRE), which are desirable but not absolutely necessary.

Requirements

stRE1 Mass shall be conserved in each single time interval.

stRE2 The interpolated function shall preserve non-negativity.

stRE3 The boundary transitions shall be continuous.

soRE1 The interpolated function shall remain monotonic where input data are.

soRE2 Symmetric structures shall remain symmetric.

soRE3 The interpolated curve shall be realistic and accurate.

soRE4 The algorithm shall be computationally efficient and easy to implement into the

existing framework of the FLEXPART model.

The synthetic time series for the first tests is specified with 3-hourly resolution. It consists of four isolated precipitation

events, with stationary precipitation rates during the events and durations which increase from one to four 3-h intervals. As the

variation within each 3-h interval is unknown, it is visualised as a step function. We refer to it as Ideal 3-hourly (I3h). Both

new algorithms IA1 and IA2 and the currently used IFP were applied to these data. As all three algorithms are intended to

be used in connection with linear interpolation, they are visualised by connecting the resulting supporting points with straight5

lines. Figure 10 shows the input data set together with all these curves.

It is easy to see that IFP violates requirement stRE1 (cf. Table 2): the mass of the first precipitation event is spread over three

intervals instead of one. This leads to a reduction of the precipitation intensity in the originally rainy interval while precipitation

appears also in adjacent, originally dry intervals. This problem was already introduced in Section 1. As for the second event, the

mass here is conserved within its two time intervals. A peak value is constructed which is twice as high as input precipitation10

rate. In the third event, having a duration of three times 3 h, mass is shifted from the two outer intervals into the middle one.

The same is happening for the fourth event, forming two local maxima separated by a local minimum in the centre of the

event. In all these events, symmetry and non-negativity are conserved, hence fulfilling requirements stRE2 and soRE2. Despite

the fact that the IFP algorithm does conserve mass globally, it does not conserve the mass within a single time interval, thus

violating the central requirement stRE1 (which motivated the search for a better solution). The continuity requirement stRE315

is fulfilled. Requirements soRE3 and soRE4 cannot be tested well with this short, simple and idealised case. The monotonicity

condition (soRE1) appears to be violated in the fourth event, but we have to consider that no sub-grid behaviour of the input

data is specified, thus this is only a potential violation.

Concerning the behaviour of the two newly developed algorithms IA1 and IA2, we can clearly see in Fig. 10 that no mass

is spread from the wet intervals into the dry neighbourhood. For a strict verification of local mass conservation (stRE1), we20

compared the integral values in each interval of the interpolated time series and I3h. The results show that mass is conserved

perfectly for both algorithms. Moreover, non-negativity (stRE2) as well as the continuity requirement (stRE3) are also fulfilled.
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Figure 10. Verification of the interpolation algorithms for four simple precipitation events. The 3-hourly synthetic precipitation rate (I3h)

is illustrated as a step function in light blue. Reconstructions are shown as linear connections of their respective supporting points, with the

current FLEXPART algorithm (IFP) in green, newly developed algorithm IA1 in orange, and IA2 (also new) in red.

In the representation of the input precipitation series as a step function, the precipitation rate increases or decreases with a jump.

This forces the interpolation algorithms also to have steep rises or drops of precipitation rates and in addition require some

overshoot to conserve the mass. In the first two precipitation events, our expectations for a new algorithm as formulated in

Section 1.1 are certainly satisfied. In the longer events, however, we observe a non-monotonic behaviour within the wet period.

As directly intelligible, it is not possible for the interpolated curve to directly turn into a constant value without overshoot. This5

would either lead to excess mass in the inner period as seen in the IFP algorithm, or to a lack in the outermost periods. As

a compromise, interpolated curves have to overshoot to compensate the non-immediate, continuous rise / drop at the border.

While IA1 accomplishes this within a single 3-h interval, algorithm IA2 falls off more slowly towards the middle of the events

with the consequence of non-constant behaviour extending over two intervals on each side. In order to investigate how these

wiggles go on, a case with values constant during 24 hours has been constructed whose results are shown in Fig. 11. The10

amplitude of the wiggles in IA2 falls off rapidly. In addition, an asymmetry can be noticed: only on the left side wiggles spread

beyond the second rainy interval, but not on the right one, where the local minimum in the second interval is a bit bigger.

Nevertheless, the mass is still conserved in both algorithms. While these cases, and especially the discontinuous input time

serious, are not very realistic, they serve to demonstrate that a strict fulfilment of the monotonicity requirement (soRE1) cannot

be demanded. The question of monotonicity will be revisited with more realistic cases.15

As mentioned, Figures 10 and 11 show that the symmetry condition (soRE2) is satisfied by IA1 but not by IA2. The reason

for this difference is the way of the monotonicity filter application. In the IA1 algorithm the filter is only applied if a condition

is met (‘M’ or ‘W’ shape, Eq. 27), while in IA2 the filter is applied for each time interval. We would see in IA1 exactly the

same behaviour as in IA2 if we would remove the condition of Eq. (27).
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Figure 11. Verification of the different behaviour of the interpolation algorithms for a longer constant precipitation event plotted in mm h−1.

The 3-hourly synthesised precipitation rate (I3h) is illustrated as a step function in light blue, the old interpolation algorithm of FLEXPART

(IFP) in green and the newly developed algorithms IA1 and IA2 are shown in orange and red, respectively.
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Figure 12. Same as Figure 11, but comparing only IA2 and the modified version IA2m. It is recommended to zoom in to see the differences

clearly.

In the context of investigating symmetry, we have also run the reconstruction algorithms in the reverse direction. This

produced identical results with IA1 but different results for IA2. As this is not desirable, we run IA2 in both directions and

the mean of the resulting values for the supporting points is taken. This results in a nearly symmetric solution (Fig. 12) and

fulfils the symmetry requirement soRE2. Thus, from now on, we are using this version of IA2, called Interpolation Algorithm

2 modified (IA2m).5
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Figure 13. Verification of the different behaviour of the interpolation algorithms for a complex synthetic precipitation time series. R3h is the

input data series with 3 h resolution, IFP is the linearly interpolated curve according to the current scheme in FLEXPART, while IA1 and

IA2m are the reconstructions using the new algorithms.

In the next step, we extended the verification to a case with more realistic, but still synthetic data (Fig. 13). Again, we can see

the non-conservative behaviour of the IFP algorithm. The new algorithms IA1 and IA2m conserve the mass within each single

interval within machine accuracy (ca. ±10−15). As even spurious negative values need to be avoided for some applications,

the results were modified by setting values within a range between 0 and −10−12 to zero. Mass conservation (srRE1) and the

non-negativity condition srRE2 as well as srRE3 and soRE2 are fulfilled. In this example it becomes evident that reconstruction5

of the precipitation curve with IA1 and IA2m is much more realistic (soRE3) than for IFP. Due to the two additional supporting

points per interval, curves are able to adapt better to strong variations, and the shifting in time of peaks as observed with IFP

is avoided. Nevertheless, in some cases a violation of monotonicity can be observed, e.g. around hour 30, and a bit before

hour 26. This corresponds to a period where a generally strong increase of the precipitation rate is weakened within two 3-h

intervals. In a way, it thus resembles the examples shown before, where overshooting was unavoidable. A clear preference for10

IA1 or IA2m cannot be derived from this example. We found that they both fulfil all requirements with a minor exception for

the soft requirement of monotonicity, which is deemed acceptable.

Having verified that the newly developed algorithms fulfil the requirements, they will next be validated with real data.

4.2 Validation with ECWMF data

The validation with ECMWF data makes use of precipitation data retrieved with both 1 h and 3 h time resolution. The 3-h data15

serve as input to the algorithms, and the reconstructed 1-h precipitation amounts are then compared to the true 1-h data. In this

way, the improvement of replacing IFP by one of the new algorithms can be quantified. By using a large set of data, robust

results are obtained.
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4.2.1 ECWMF precipitation data

Fields of both large-scale and convective precipitation were extracted from ECMWF’s MARS archive as operational deter-

ministic forecasts with 0.5◦ resolution for the whole year 2014 and the whole globe, thus yielding approximately 2.28 · 109

one-hourly data values (720 grid cells in E–W direction, 361 in N–S direction, 8761 hours including the last hour of 2013).

They were extracted as 3-hourly and as 1-hourly fields. ECMWF output distinguishes these two precipitation types, derived5

from the grid-scale cloud microphysics scheme in the case of large-scale precipitation and from the convection scheme in the

case of convective precipitation. Note that parameterised convection by definition is a sub-gridscale process, while reported

precipitation intensities are averaged over the grid cell. Precipitation data are accumulated from the start of each forecast at 00

and 12 UTC. We used both these forecasts, so that the forecast lead time is at most 12 h. This is in line with typical data use

in FLEXPART. Data were immediately de-accumulated to 1 h and 3 h sums (see Section 7 on the data availability for more10

details).

4.2.2 Visual analysis of sample period

Two short periods in January 2014 were selected for visual inspection at a grid cell with significant precipitation, one for a

large-scale and another one for a convective rain episode. Convective precipitation occurs less frequently and often falls only

during a few hours per day. Therefore, its temporal rate of change tends to be larger than in the case of large-scale precipitation15

which is more continuous and homogeneous. We are interested in the performance of the reconstruction algorithms for both

of these types. A criterion for the grid cell selection was also to exhibit monotonicity problems as discussed above. The two

days are characteristic but do not represent a rare or extreme situation. The results are shown in Fig. 14 including the reference

1-hourly and 3-hourly ECMWF data, called R1h and R3h, respectively. Note that the same input, namely R3h, is used for all

the algorithms; R1h serves for validation.20

Similar to the synthetic cases, large discrepancies between the real ECMWF data and the interpolated data from the IFP

algorithm can be found. This is true especially for the convective precipitation, where frequently the real peaks clipped and the

mass is instead redistributed to neighbouring time intervals with lower values, leading to a significant positive bias there. The

function curves of IA1 and IA2m follow the R3h signal and are even able to capture the tendency of the R1h signal as long

as R1h does not have too much variability within the 3-h intervals of R3h. Again, in the convective part there is one position25

in time where the monotonicity is violated. We can see the violation at the boundary of the 11th of January at 12 UTC. It is

noticeable that the IA1 algorithm has the small drop of precipitation rate earlier than the IA2m algorithm almost every time

(see also Fig. 13). As far as we know it never happened vice versa.

The large-scale precipitation rate time series is smoother and precipitation events last longer. As Fig. 14 shows, this is easier

for the reconstruction with all three algorithms. Nevertheless, the double-peak structure of the precipitation event between 1530

Jan 18 UTC and 16 Jan 09 UTC is only reconstructed in the new algorithms IA1 and IA2m, not in IFP. However, the R1h

time series is not always captured very well, especially short interruptions of precipitation lasting only a single hour can not be

identified by any of the algorithms.
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Figure 14. Sample periods in January 2014 at the grid cell centred on 48◦N, 16.5◦W. (a) 11 Jan 00 UTC to 13 Jan 06 UTC for convective

precipitation intensity, and (b) 14 Jan 00 UTC to 17 Jan 00 UTC for large-scale precipitation intensity. Original ECMWF data are shown as

step functions (1-hourly: R1h, 3-hourly: R3h), while the interpolation resulting from the reconstructions algorithms (new algorithms: IA1

and IA2m, current FLEXPART algorithm: IFP) are piecewise linear between the respective supporting points. A baseline is drawn in black

at intensity value zero.

Regarding the monotonicity, the large-scale precipitation time series produces a few instances with unsatisfactory monotonic

behaviour, for example on Jan 14 12 UTC or on 14 Jan 21 UTC, in the IA1 curve while the IA2m algorithm avoids the secondary

minima in these cases (there are other cases where the behaviour is vice versa, not shown). The double peak structure in the

IA1 and IA2m reconstructions on 15 Jan between 6 and 15 UTC are similar to the plateau-like ideal cases where overshooting

is unavoidable.5
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Notwithstanding the minor problems with the monotonicity condition, the reconstructed precipitation curve from IA1 and

IA2m are much closer to the real ones than the IFP curve. Therefore, we consider requirement soRE3 as basically fulfilled.

This example raises the expectation that the new algorithms will be capable to improve the performance of the FLEXPART

model.

4.2.3 Statistical validation5

A statistical evaluation comparing the one-hourly precipitation reconstructed by the new IA1 and IA2m algorithms from three-

hourly input data (R3h) to the reference one-hourly data (R1h) was carried out. In addition, the three-hourly output from the

old IFP algorithm was included in the evaluations, dividing it into one-hour segments by the usual linear interpolation between

the supporting points. While the R1h data directly represent the amount of precipitation in the respective hour, the output of the

algorithms represents precipitation rates at the supporting points of the time axis, and the hourly integrals had to be calculated,10

under the assumption of linear interpolation. The data set comprises the whole year of 2014 and all grid cells on the globe as

described in Section 4.2.1. All evaluations were carried out separately for large-scale and convective precipitation.

A set of basic metrics is presented in Table 3. Since all the reconstruction algorithms are conservative, either globally (IFP)

or locally (IA), the overall averages must be identical. This is the case for all of the 1-hourly time series. However, the average

of R3h large-scale data slightly deviates from the R1h data (fourth decimal place). This can be explained as a numerical effect,15

as R3h averages were calculated from fewer data. All the data sets fulfil the non-negativity requirement as indicated by a

minimum value of zero. It may come as a surprise that the maximum precipitation rate found in the convective precipitation

is lower than in the large-scale precipitation. However, as mentioned before, this is a grid-cell-mean of sub-grid precipitation

which may explain this behaviour. The overall maximum in R1h is well reproduced by the new reconstruction algorithms

maxima from the R3h input data, whereas IFP underestimates it by about 10 %. The overall maximum of the large-scale R1h20

data set appears to better met by IFP than by IA1 or IA2m. A closer inspection of the situation (Fig. 15) shows that even though

the IA version produce a slightly too high value in the hour with the maximum, its overall shape is much more accurate. The

higher-order moments (standard deviation, skewness, kurtosis) are generally underestimated by the reconstruction algorithms.

However, the new algorithms are always closer to the R1h values than the IFP values. An exception is the kurtosis of the

large-scale precipitation which is overestimated (again, less by IA1, IA2m than by IFP).25

The root mean square error (RMSE), the normalised root mean square error (NMSE) and the correlation coefficient (R)

between the R1h and the reconstructed data are listed in Table 4. The NMSE is calculated as

NMSE =

√
1
N

∑

i

(R1hi− IAi)2

[(R1hi + IAi)/2]2
(37)

where only cases with (R1hi + IAi)/2 > 0.1 are considered, N being the total number of these cases. The new methods

represent a clear improvement compared to the IFP method, with IA2m being slightly better than IA1 with respect to all30

parameters. The large-scale precipitation reconstruction is obviously more accurate than that of the convective precipitation,

even though this gap is reduced by IA1 and IA2m.
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Table 3. Statistical metrics for the global large-scale and convective precipitation rates (mm h−1) of the year 2014 ECMWF data set.

It comprises the minimum (MIN), maximum (MAX), mean value (MEAN), standard deviation (STD), skewness (SKEW), and kurtosis

(KURT) of the true ECMWF R3h and R1h data as well as of the data reconstructed by the current FLEXPART algorithm IFP and the two

new algorithms IA1 and IA2m. Among the reconstructed data, those being closest to R1h have been marked by printing in bold.

large-scale precipitation convective precipitation

MIN MAX MEAN STD SKEW KURT MIN MAX MEAN STD SKEW KURT

R3h 0.0 38.95 0.0443 0.2139 22.39 1021.20 0.0 19.77 0.0567 0.2503 9.91 155.08

R1h 0.0 46.21 0.0444 0.2282 23.98 1144.16 0.0 27.75 0.0567 0.3017 12.86 275.50

IFP 0.0 42.19 0.0444 0.2172 23.66 1211.27 0.0 24.26 0.0567 0.2462 9.95 159.43

IA1 0.0 54.39 0.0444 0.2195 23.84 1188.61 0.0 27.38 0.0567 0.2584 10.70 190.07

IA2m 0.0 53.48 0.0444 0.2200 23.72 1168.20 0.0 27.38 0.0567 0.2591 10.65 187.13
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Figure 15. Illustration of the large-scale precipitation event (at grid point 49◦W, 57.5◦S) with the absolute maxima of the year 2014. The

precipitation rate is presented in mm h−1. The figure shows the 1- (dark blue, R1h) and 3-hourly (light blue, R3h) original ECMWF data,

the new IA1 algorithm (orange), the new IA2m algorithm (green) and the old FLEXPART algorithm (red, IFP). The black line represents the

zero baseline.

Another aspect is the ability of the algorithms to conserve the ratio of dry and wet intervals (Table 5). Two different thresholds

of the precipitation intensity were chosen to separate ‘dry’ and ‘wet’. The lower one, 0.002 mm h−1 corresponds to about

0.05 mm per day (rounded 0.1 mm, the lowest non-zero value reported by meteorological stations). The higher one is 0.2

mm h−1 and indicates substantial rain or snowfall. Again, the results are reported separately for large-scale and convective

precipitation. In all cases, the reconstructions produce too many wet intervals. The relative deviations are larger for the lower5

threshold, and for convective precipitation in comparison to large-scale precipitation. In all cases, the new algorithms result

in a clear improvement compared to the current IFP algorithm. For the high threshold and large-scale precipitation, however,

already IFP deviates only by 1.9 %; for convective precipitation, the relative deviation is improved from 15 % to 11 %. In the

case of the lower threshold, the improvement is from 18 % to 13 % and 35 % to 23 %, the latter for convective precipitation.

The differences between IA1 and IA2m are marginal, with the latter being better in three of the four situations.10
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Table 4. Root-mean-square error (RMSE, mm h−1), normalised root-mean-square error (NMSE, mm h−1) and correlation coefficient (R)

between the interpolated data sets IFP, IA1 and IA2m and the true ECMWF data R1h, based on the global data set for the year 2014,

large-scale and convective precipitation. Note that NMSE is calculated only for data pairs clearly different from zero as described in the text.

large-scale precipitation convective precipitation

RMSE NMSE R RMSE NMSE R

IFP_R1h 0.0860 0.4270 0.927 0.1896 0.9091 0.779

IA1_R1h 0.0630 0.3330 0.961 0.1605 0.7995 0.847

IA2m_R1h 0.0610 0.3241 0.964 0.1597 0.7970 0.849

Table 5. Frequencies of dry (hd) and wet (hw) intervals in the reference (R3h, R1h) and interpolated (IFP, IA1, IA2m) precipitation data

(upper part), based on the global data set for the year 2014. Relative deviations between the three interpolations and R1h are shown in the

lower part. Two different thresholds (0.2 mm h−1 and 0.002 mm h−1) were used to separate ‘wet’ and ‘dry’. Large-scale and convective

precipitation were analysed separately. All values are in percent. The reconstructed values that match best the true R1h data are printed in

bold.

threshold = 0.002 mm h−1 threshold = 0.200 mm h−1

large-scale convective large-scale convective

precipitation precipitation precipitation precipitation

hd hw hd hw hd hw hd hw

R3h 59.74 40.26 72.11 27.89 95.39 4.61 94.06 5.94

R1h 64.72 35.28 77.62 22.38 95.49 4.51 94.72 5.28

IFP 58.21 41.79 69.79 30.21 95.40 4.60 93.93 6.07

IA1 60.16 39.84 72.51 27.49 95.42 4.58 94.13 5.87

IA2m 60.24 39.76 72.46 27.54 95.43 4.57 94.15 5.85

δd δw δd δw δd δw δd δw

IFP_R1h -10.06 18.46 -10.08 34.95 -0.09 1.87 -0.83 14.97

IA1_R1h -7.05 12.94 -6.59 22.84 -0.08 1.59 -0.63 11.29

IA2m_R1h -6.93 12.71 -6.65 23.04 -0.07 1.41 -0.60 10.78

Finally, two-dimensional histograms (relative frequency distributions) are provided for a more detailed insight into the

relationship between the reconstructed and the true 1-h values (Fig. 16). The larger scatter in the convective precipitation

compared to the large-scale one is striking. The distributions are clearly asymmetric with respect to the diagonal, especially

for the convective precipitation. One has to be careful in the interpretation, however, because most cases are concentrated in

the lower left corner (log scale for the frequencies, spanning many orders of magnitude!). Thus, at least for the high values,5
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Figure 16. Two-dimensional histogram (relative frequencies) showing the relationship between the hourly precipitation reconstructed by (a)

IFP, (b) IA1 and (c) IA2m and the true R1h precipitation, based on the global data set for the year 2014. For each axis, 100 equally-distributed

bins were used. The correlation coefficient is annotated to each plot, and the one-to-one line is shown in red.

more of them fall below the diagonal, indicating more frequent underprediction. This might be due to the short duration of

peaks with the highest intensity. For both precipitation types, an overestimation of very low intensities is noticeable. Whereas

for the large-scale type the IFP is more or less equally distributed in the lower intensity range and the new algorithms are
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Table 6. Computing time (wall-clock) for the processing of one year of global data (ECMWF test data used in this paper) with the old IFP

algorithm and the new IA1, IA1m and IA2m algorithms, on a Linux server with Intel(R) Xeon(R) E5-2690 @ 2.90GHz CPU, single thread.

Algorithm Wall-clock time

IFP 2 h 29 min

IA1 2 h 24 min

IA1m 2 h 06 min

IA2m 2 h 56 min

overestimating the smallest intensities. Zooming in, a thin light-blue region close to the y-axis can be seen for the convective

precipitation, corresponding to the strong bias towards wet cases in Table 5 with the low threshold. This is continued as a

general levelling off of (imagined) frequency isolines towards the y-axis, which corresponds to the weaker, but still present

dry-wet bias with higher thresholds. Another feature for the convective precipitation is the structure noticeable in the sector

below the diagonal. Especially in the IFP plot, a secondary maximum is visible in the light-blue area, indicating a characteristic5

severe underprediction. This is less pronounced for IA1 and almost absent for IA2m. Summarising, the scatter plots indicate

an improvement from IFP towards IA1 and IA2m. A near-perfect agreement obviously cannot be expected as the information

content in the 3-h input data is of course less than in the 1-h data. This information gap is larger for the convective precipitation

which obviously has a shorter autocorrelation time scale.

4.3 Performance10

Potential applications for the new algorithm include situations where computational performance is relevant. For the precipi-

tation (and possibly other input data, see Section 5), both the time for the preprocessing software flex_extract (which includes

reconstruction algorithm to calculate the supporting points) and time for interpolation in FLEXPART itself are relevant, and

they should not significantly exceed the current computational efforts.

During the evaluation process a computationally more efficient version of the IA1 algorithm was developed. It applies the15

monotonicity filter within one sweep through the time series (filter trailing behind the reconstruction) rather than processing

the series twice. The algorithmic equations are unchanged. We refer to this version as Interpolation Algorithm IA1 modified

(IA1m). It was verified that results are not different from the standard IA1.

The wall clock time for the application of each of the algorithms to the 1-year global test data set is listed in Table 6. This

is the time needed to reconstruct the new time series with Python and to save the data in the npz format provided by Python’s20

NumPy package, which is the most efficient way to write them out. The computing time for all the new algorithms is similar

to that of the old algorithm. The fastest version is IA1m, which needs about 85 % of the time required by IFP, while the IA2m,

the slowest version, takes about 118 % of IFP.
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5 Conclusions and Outlook

5.1 Conclusions

We have provided a one-dimensional, conservative and positive-definite reconstruction algorithm suitable for the interpolation

of a gridded function whose grid values represent integrals over the grid cell, such as precipitation output from numerical

models. The approach is based on a piecewise-linear function with two additional supporting points within each grid cell,5

dividing the interval into three pieces.

This approach has three degrees of freedom, similar to a piecewise parabolic polynomial. They are fixed through the mass

conservation condition, the slope of the central interval which is taken as the average of the slopes of the two outer subintervals,

and the left and right border grid points (each counting as half a degree of freedom). For the latter, the geometric mean value

of the bordering integral values is chosen. Its main advantage is that the function values vanish automatically if one of the10

involved values is zero, which is a necessary condition for continuity. However, the geometric mean in general converges too

slowly with vanishing values to prevent negative values under all conditions. This led us further to derive a sufficient condition

for non-negativity and restrict the function values accordingly by these upper bounds.

This non-negative geometric-mean-based algorithm, however, still violates monotonicity. Therefore, we further introduced

a (conservative) filter for regions where the remapping function takes an ‘M’- or ‘W’-like shape, requiring a second run15

through the data (IA1). Alternatively, the filter can be applied during the first sweep immediately after the construction of

the next interval (IA1m). We also showed how this basic idea of the monotonicity filter can be directly incorporated into the

construction of an algorithm (IA2). As in this case the algorithm is not symmetric, we apply it a second time in the other

direction and average the results (IA2m).

The evaluation part, consisting of verification and validation, confirmed the advantages of the new algorithms IA1 (including20

IA1m) and IA2m. After the verification of our requirements, each evaluation step revealed a significant improvement in the

results by the new algorithms as compared to IFP, the algorithm currently used for the FLEXPART model. Nevertheless, the

soft requirement of monotonicity has not been fulfilled perfectly but the deviation is considered to be acceptable. The modified

version of IA1, IA1m, yields identical results to IA1 and is quite fast. However, the results of the quantitative statistical

validation would slightly favour the IA2m algorithm whose computational performance is still acceptable, even though in this25

modified form the original IA2 algorithm is applied twice.

5.2 Outlook

The next steps will be the integration of method into the preprocessing of the meteorological input data for the FLEXPART

Lagrangian dispersion model and the model itself for use with the temporal interpolation of precipitation. The application

to two dimensions, intended for spatial interpolation, is also under investigation. Options include the straightforward operator30

splitting approach as well as an extension based on bilinear interpolation with additional supporting points. As the monotonicity

filter appears to be not yet perfect, this may also be revisited.
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5.3 Possible other applications of the new piecewise-linear reconstruction method

It may be noted that there is a wide range of useful applications of such conservative reconstructions. Interestingly, at least

in the geoscientific modelling community, they have largely remained restricted to the specific problem of semi-Lagrangian

advection schemes. Therefore, we are sketching below more possible use cases.

In typical LPDMs, other extensive quantities which are being used, apart from precipitation, are surface fluxes of heat and5

momentum which enter boundary-layer parameter calculations and which could be treated similarly, especially for temporal

interpolation. The often-used three-hourly input interval is quite coarse and may clip, for example, the peak values of the

turbulent heat flux.

In many applications, output is required for single points representing measurement stations or, in the case of backward runs

(Seibert and Frank, 2004), point emitters. While FLEXPART has the option of calculating concentrations at point receptors with10

a parabolic sampling kernel, the results have often been similar to simple bilinear interpolation of gridded output, probably

because of the difficulty to determine an optimum kernel width; therefore many users produce only the gridded output and

take the point values through a nearest-neighbour or a bilinear interpolation approach. The piecewise linear interpolation with

additional supporting points as introduced here, or one of the higher-order methods discussed in Section 2, would probably

provide an improvement.15

This latter example could be easily extended to all kinds of model output postprocessing, where currently too simple methods

often prevail. It should be clear that applying naive bilinear interpolation to gridded output of precipitation and other extensive

quantities, including fluxes, introduces systematic errors as highlighted in Section 1.

Finally, this also includes contouring software. Contouring involves interpolation between neighbouring supporting points

to determine where the contour line should intersect the cell boundaries. It is obvious that linear interpolation is inadequate for20

extensive quantities whose values represent grid averages. This holds in particular for precipitation, energy fluxes, and trace

species concentrations. While we cannot expect the many contouring packages to be rewritten with an option for conservative

interpolation, our method (once extended to two dimensions) provides an easy implementation through preprocessing resulting

in an auxiliary grid with triple (1-dimensional) resolution that then could be linearly interpolated without violating mass

conservation, thus being able to be used with standard contouring software.25

6 Code availability

The piecewise linear reconstruction routines IA1, IA2 and IA1m are written in Python2. The code is included in the supple-

mentary material and is licensed under the Creative Commons Attribution 4.0 International License. For IA2m, IA2 has to be

called with the original and the reversed time series and the results have to be averaged. The software for the statistical eval-

uation (written in Python2) is available on request by contacting the second author A. Philipp (anne.philipp /at/ univie.ac.at).30

It relies on the NumPy (Walt et al., 2011) and SciPy (Jones et al., 2001–2017) libraries for data handling and statistics, and on

Matplotlib (Hunter, 2007) for the visualisation. The FLEXPART model as well as the flex_extract software can be downloaded

from the community site http://flexpart.eu/.
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7 Data availability

The precipitation data used for evaluating the interpolation algorithms were extracted from ECMWF through MARS retrievals

(ECMWF, 2017). For easy reproducibility of the results, we provide the MARS retrieval routines in the supplementary material,

licensed under the Creative Commons Attribution 4.0 International License. Note that only authorised ECMWF users have

access to the operational archive data.5

Appendix A: Theoretical aspects of the monotonicity filter

We show in the following that the monotonicity filter as introduced in Section 3.6 improves the monotonicity behaviour and

also does not destroy non-negativity. The conservation of mass (equal-area condition) is clearly preserved by construction.

(i) The "M"-shape: This corresponds to the case

k
(2)
i > 0 ∧ k

(3)
i < 0 ∧ k

(1)
i+1 > 0 ∧ k

(2)
i+1 < 0 . (A1)10

Then, the filter improves the monotonicity behaviour in the sense that

fmon
i+1 > fi+1 for all i ∈ I . (A2)

To see this we note that according to Eq. (8), the conditions k
(2)
i > 0 and k

(2)
i+1 < 0 are equivalent to

fi < fi+1 and fi+2 < fi+1 . (A3)

Furthermore, from the condition k
(3)
i < 0 we can deduce15

fi+1 < f
(2)
i =

3
2
gi−

5
12

fi−
1
12

fi+1 and thus gi >
13
18

fi+1 +
5
18

fi ,

implying in particular also

fi+1 < 3gi , and furthermore f�i+1 =
18
13

gi−
5
13

fi > fi+1 . (A4)

From the condition k
(1)
i+1 > 0 we can deduce in a similar fashion that

fi+1 < f
(1)
i =

3
2
gi+1−

1
12

fi+1−
5
12

fi+2 and thus gi+1 >
13
18

fi+1 +
5
18

fi+2 ,20

such that in particular also

fi+1 < 3gi+1 , and moreover f��i+1 =
18
13

gi+1−
5
13

fi+2 > fi+1 . (A5)

Making use of all derived inequalities we can deduce

fmon
i+1 = min

{
3gi,3gi+1,

√
(f�i+1 f��i+1)+

}
> fi+1 .
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(ii) The "W"-shape. This corresponds to the case

k
(2)
i < 0 ∧ k

(3)
i > 0 ∧ k

(1)
i+1 < 0 ∧ k

(2)
i+1 > 0 . (A6)

Again the filters improves the monotonicity behaviour in the sense that

fmon
i+1 < fi+1 for all i ∈ I . (A7)

Arguing similarly, now the conditions k
(2)
i < 0 and k

(2)
i+1 > 0 imply5

fi+1 < fi and fi+1 < fi+2 (A8)

and thus in particular

fi+1 < min{3gi,3gi+1} . (A9)

This can be easily proven by contradiction, since otherwise if fi+1 = 3gi (or fi+1 = 3gi+1), then also fi ≤ 3gi (or fi+2 ≤
3gi+1 respectively) by construction, implying furthermore fi ≤ fi+1 (or fi+2 ≤ fi+1), which obviously contradicts (A8).10

From the condition k
(3)
i > 0 we can deduce similar to above

gi <
13
18

fi+1 +
5
18

fi , and therefore f�i+1 =
18
13

gi−
5
13

fi < fi+1 . (A10)

From k
(1)
i+1 < 0 we obtain accordingly

gi+1 <
13
18

fi+1 +
5
18

fi+2 such that f��i+1 =
18
13

gi+1−
5
13

fi+2 < fi+1 . (A11)

Note that in comparison to the "M" - shape above there is no lower bound for the different constructed values f�i+1,f
��
i+1.15

Thus they can take possibly negative values and care has to be taken here to ensure that the filter still preserves non-

negativity. Combining now (A9), (A10) and (A11) we can deduce

fmon
i+1 = min

{
3gi,3gi+1,

√
(f�i+1 f��i+1)+

}
=
√

(f�i+1 f��i+1)+ < fi+1 . (A12)
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